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Asymptotic properties of Levy flights in quenched random fields
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Long-time asymptotic behavior of the probability distribution function 6fy dights in quenched random
fields is analyzed with the use of field-theoretic renormalization group. This problem has been recently studied
with the aid of a dynamic renormalization group based on the momentum-shell integration rfietod
Fogedby, Phys. Rev. B8, 1690(1998]. While a great deal of the results of the quoted paper are confirmed
by the present analysis, it is also shown that random field with long-range spatial correlations gives rise to
asymptotic behavior with the dynamic critical exponeness than the step indebof the Levy flights, for a
finite range of values of contrary to the conjecture that always f. In particular, in divergenceless random
field z=d/2+ 1— a<f, whena<1+d/2—f andd<2+2«, and correlations fall off as~9+2¢, The physical
content of a new critical dimension proposed in the aforementioned paper in connection with the anomalous
scaling of the diffusion coefficient is also discussed.

PACS numbds): 05.40.Fb, 02.50-r

[. INTRODUCTION where the coupling constangs and g, measure the inten-
sity of the correlations of solenoidal and potential parts, re-

Recently, the momentum-shell version of the spectively, of the random field. The correlation function of
renormalization-group(RG) approach to the analysis of the isotropic short-range case,(r)=0gdnno(r) is recov-
long-time large-scale asymptotic behavior of probability dis-ered forgr=g, =g anda=0.
tribution functions was applied to ‘Mg flights in various The motion of a test particle may be heavily affected by
quenched random field4,2]. Levy flights are a generaliza- the random field leading to anomalous diffusion, i.e., to the
tion of random walks with a step distributigo(l) falling off  long-time asymptotic behavior of the PDF in the form
as a power of the step lenggtfl) o<1 =1~ with the step index

0<f<2. The probability distribution functiofPDF) P(t,r) P(t,r)=t ¥2R(rt 1), (4)
of the positiorr of a test particle in the external fieklobeys
the following Fokker-Planck equation: with the dynamic critical exponerg#2. In Eq.(4) Ris a
dimensionless scaling function.
JP 912 , A perturbative solution of the stochastic probléin—(3)
ot D1(=V*)™P+D,V°P—V[FP]. (1) becomes inconsistent below a critical dimensitn at and

below which contributions from the small-wave-numioit)
Here, the initial conditiorP(0,r)= 6(r) will be used. In Eq. region in the Fourier-transformed problem give rise to effec-
(1) the fractional power oW 2 is defined through the Fourier tive coupling constants growing with time. The critical di-

transform. The ordinary diffusion term is brought about byMension is determined from the condition that the coupling
the small-scale part of the step distribution. constantsgr and g, are dimensionless. For instance,

The zero-mean Gaussian distribution of the random field= 2f —2 for Levy flights with the step indekin a quenched

is determined by the correlation function field with isotropic local correlations.
These IR divergences may be dealt with by the use of the
(Fu(DFa(r"))=Cnn(r —1"). ) renormalization group in the critical dimension, where they

can be transferred to the large-momentum region. The results
may be extented below the critical dimension in the form of
ad.—d expansiori6]. Above the critical dimension the per-
turbative solution is consistent and the leading asymptotic
part of the PDF in the random field is the same as in zero

In the generic case the correlation funct{@-5] consists of
independent transverse and longitudinal p&tsC"+C",
where(in d-dimensional spage

dk etk K K field. Whend<d,, the higher order contributions to the PDF
cT (r)=ng € _ _m™m affect its structure and the resulting limiting distribution is
m 2md K2\ ™M K2 )’ not stable.

In Ref.[1] the asymptotic analysis was carried out by the
dk ek Kk K use of thg momen_tum—shell integration method for a.generic
/0 (3) random field with independent solenoidal and potential parts
(2m)9 k2« K2 and both short-range and long-range correlations. Among the
basic results of Ref1] was the observation that fluctuations
of the drift field give rise to effective diffusive contributions
*Also at National Defence College, P.O. Box 7, FIN-00861 Hel- nonanalytic ink?, which was interpreted as another critical
sinki, Finland. dimension(higher than that defined above by dimensional
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arguments appearing for the model of ‘Mg flights in  of Eq. (1). It is customary to express the fluctuation correc-
quenched random fields. It will be shown in this paper thations in terms of a self-energy functiad,;(w,k) defined
these nonanalytic contributions remain subleading and do nahrough the full PDFP(w,k) (i.e., averaged over the drift
spoil the ordinary perturbation expansion until the usualffield F) as

critical dimensiond,, is reached, whereas fdr<d, the drift-

field fluctuations generate leading terittisis effect may be 1

described as coupling constants growing with timehich Plow,k)=
calls for a renormalization of the perturbation expansion.

It was also conjectured in Reff1] that the dynamic criti-
cal exponengz=f irrespective of the dimension of space and
the properties of the quenched disorder. This is in indeed s
in large regions of the parameter space spanned agdf,
but it will be shown below that there are also regions in
which z<f due to the transport-enhancing effect of the so- : : : .
lenoidal part of the drift field with long-range correlations. physmal length scale, below which the macroscopic descrip-

This paper is organized as follows. In Sec. Il subtleties intlon of Egs.(1), (2) does not apply.

: : The actual renormalization is carried out in the critical

fhfegaalgél?ﬁg?o?é Smﬁg-\l:vsgael-grtiltimcgf:ji?'r:\(/a?]rgigrrlcaer? di:&anﬁﬁimension, in which the UV and possible IR divergences are
Y PUlelated. The standard machinery of the renormalization

]'(Lcj)xva;?)flﬂe/ R?Ifi' [r:llt]s glr'lsgussosl’:g(.)igz;tlergr%%rr?fafjr\]/eecrt?c:ﬁ ilno'?hge theory allows to deal consistently with the UV divergences
Jump y 19 only, therefore it is necessary to distinguish contributions to

Wit the aic of he fleld-theoreic RG. Section NV s devoted S1OUATTIES coming from the UV and IR regions o the
to conclusions ' wave-vector space. To this end, '|t is useful to introduce also
' a small-wave-number regularization. There are many ways to
carry out both regularizations, but some care should be taken
II. DIVERGENCES IN THE PERTURBATION THEORY in doing this, e.g., to preserve important symmetries of the
AT LARGE SCALES model.

. , , The IR regularization may be introduced, for instance, by
| will use the field-theoretic setup to formulate the pem”‘adding a decay term-m?P to the right-hand side of the

bative solution of the stochastic problef), (2). The PDF  qrigina| Fokker-Planck equatiofl). This is equivalent to an
determined by Eq(1) and averaged over the random forceimaginary shift in the frequencw— w+im2. In this case

may be written in the form of a functional integri@ee, €.9.,  there is no need for a separate small-wave-number regular-

Ref. [6]) ization in the quenched model, since the frequency acts as an
effective IR-cutoff parameter due to the absence of integra-
tions over frequencies.

In Ref. [1] the short-range isotropic correlation function
Cmn(K) =96, was used for illustration of the calculation of
where the “action” is of the form divergent contributions to the self-energy. Tr_\is particular ex-

ample is, however, somewhat misleading, since the presence
of the divergence conjectured in RéL] in the wave-vector

. 6

In order to make wave-number integrals in the perturba-
tive expansion of the self-energy finite it is necessary to in-
floduce a large-wave-numbéV) regularization. This is
often done by the use of a cutoff parameterfor the wave
numbers. PhysicallyA is the inverse of the microscopic

P(t,r)= f D¢DpDF ¢(t,r)$(0,0)e5(¢v7¢’vF),

S(¢p, b F):f dr dt @[ — 4,— D4(— V3 "2+ D,V2] 6 expansion of the one-loop contribution to the PDF:
dq
1 1) -
_EJ’ dr dr’mZn F(r)Crm(r—=r")Fp(r’) 2 alek)= gf (2m)d
+J dr dtF V~ 5 kl(k|+QI)T(kaqum-A) (7)
FAtFOv e ® T [—io+Di(k+q)'+Dy(k+q)?]

The standard renormalization theor§# is constructed for ~heavily depends on the choice of the regularization. In Eq.
interactions local in space. For the short-range isotropic cort?) T is @, so far unspecified, function for the regularization
relation function Cp(r—r')=gdm,d(r—r') integration Of the wave-number integral.

over the Gaussian drift field yields a local in space effective The simplest way to introduce a regularization is to re-

action for the fieldsp and$. However, in the generic case a §trict all the integration variables to finite shelfs<|q|<A

: : b the wave-number integrals, which in E) would corre-
nonlocal interaction term results, and then it is thus prefer:" ; - -
able not to integrate out the drift fiel in the action(5). s_pond tho thg 'chtzlci(k,qjmdA)IT(?)—5(q—1r_nh).— H(Z}h q
To remind the origin of the divergence problems | calcu- 0), whereg is the Heaviside step function. This metho

late the simplest fluctuation correction to the zero-field ppp"as the disadvantage that the translational invariance is lost
Translationally invariant regularization may be achieved

by the use of the same functiohto restrict wave vectors
Po(w,k)= 1 flowing in the zero-field PDFs or drift-field correlation func-
oL —iw+DkM+Dyk? tions Po(w,k)— Po(w,k)T(K) or C;;(k)—Ci;(k)T(k), re-
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spectively. For the one-loop gragf) the latter choice re- only consistent regular method to analyze asymptotic behav-

sults in the same integral as the simple cutoff of allior of a perturbative expansion is the field-theoretic renor-

integration variables. Regularization by a cutoff of the wavemalization group.

vector flowing in the correlation function, however, has the In general perturbative contributions to the self-energy

disadvantage that the regularized correlation funcion ceasdanction X ,5(w,k) (6) are singular functions of» andk.

to be local in space. Therefore, to preserve both translationdlhis can be seen already at the one-loop level for uncon-

invariance and local character of correlations the regularizastrained drift field. Consider, for instance, the one-loop inte-

tion procedure should be applied to the free-field PDF onlygral with the transverse correlation functighwill use a
The cutoff of integration variables has been used for reguregularization through the correlation function here for sim-

larization in Ref.[1], as can be seen from its Appendix B. plicity, because the transverse correlation function is nonlo-

This cutoff indeed leads to renormalization of the diffusioncal in space anyway

coefficient D, by a quantity divergent in the limin—0,

when the integral7) is calculated aty=0. _ T O dq
However, if an IR regularization by the decay term is =5 (‘Uak)—_D—lJ’

- d

assumed, then the leading nonvanishing coefficient of the a=A(2m)

Taylor expansion of the functio7) with respect tok is K (K.+

given by the integral X m(Knt G ( — q”‘g"),
mn [—iw/Dy+(k+q)f] q

dg 4
a=A(27)9 K

Imn(K)=—g where | have retained only the leading terms in the limit of

small frequency and wave number of the zero-field PDF.

(Kt Q) Proceeding in the standard fashif] | investigate the
5 k : L > (8)  scaling limitw—s'w k— sk of the full PDF. After a suitable
[m*+Dy(k+0q)"+Da(k+q)] change of variables and taking into account that the external

o . . wave vectors factorize, | arrive at the expression
The derivatives with respect th, act on a function ok P

+qg and may thus be replaced by the derivatives with respect d
to g, . By virtue of the Gauss theorem, the integ(@ may sWT (gl sk)=— 9 skys q
be written as a surface integral over the surface of a sphere of ¢ D1 mn a=Als(27r)¢
radiusA in the wave-vector space:

s ( - qmqn)
mn .

ds enenA X f 2
_ men [-iw/Dy+(k+q)'] q

24+ DyA +DyA? ©

d,_d/2
-9 27 S In the limit s— 0 the effective UV cutoffA/s—o and the
I'(d/2)d(2m) 9 m?+D AT+ D,A%]" integral in Eq.(9) diverges as' 9, whend>f (logarithmi-
cally, whend=f). Due to the prefactors?*?~f, the whole

where the unit vectog= g/q has been introduced. Thus there expressiorE;};;T(sfw,sk) behaves as? (s?Insin d=f) in

is no divergence in the leading term of the wave-vector ®Xihe limit s—0, which is small compared with the zeroth-

. 1
pansion ofE;;i, whenm?®— 0: order termP, *(s'w,sk) ~sf(—iw+D,k).
AR Further, whend<f, the integral in Eq{(9) converges in
2(1)(0 K)=—g +o(k2). the region of large wave numbers and its scaling behavior is
AN T'(d/2)d(4m)¥ DA +D,A2] given bys® . This is a signal of singular behavior of the

integral in the region of small wave numbers in the limit
Even a more radical result is obtained, if, in order to be sure-0. The borderline valud=f is the first critical dimension
that all the symmetries of the original model are preserved iput forward in Ref[1]. However, to judge about the behav-
the renormalized one, the I’egu|al’izati0n through the freei'or of the whole perturbative Correctioﬁ(l,.)-r in this ||m|t’
field PDF [Pg(w,k)—Pgo(w,k)T(k)] is chosen. Then a

; ) ; X the scaling of the factorized wave vectors must be taken into
simple change of variables shows that the integral in(Ey.

s ind dent of th ¢ | dtaand thus due t account. Thus, ford<f the one-loop term scales as
is independent of the external wave vedtoand thus due to E%T(wa,sk)wsdﬂ_f:Sf+(d_2f+2) being still subleading,

rotational invariance vanishes identically. ¢ _ .
This dependence on the choice of the regularization pro?/hile d>|2f,_2' Or?ly ford\h2f.—2 the perturr1ba|t|ve correc-
cedure reflects not only the subtleties in the choice of a confion scales in such a way that it becomes the leading contri-

i i i d—2f+2
sistent method of renormalization, but also the singular dePution at this order. This may be expressedgas o
pendence of the full PDF on the frequency and wavdlecoming the effective expansion parameter and thus invali-

number. Problems related to a consistent choice of a renofating the perturbation expansion. Therefore, the usual per-
malization prescription become rather involved in higher or-lurbation theory becomes inapplicable only at and below the
ders due to overlapping of divergences in manyfold waveStandard critical dimensiod.=2f—2.

vector integrals. Thus, care must be taken when inferring '€ smgul(:i\)rTbehawor of the integral in E@) for d<f
asymptotic properties of a model from its divergent pertur-means tha <" (0k)~k**?~', and since the power df
bation expansion. | would like to emphasize that to date thédnere is less than two and noninteger, its contribution to
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the diffusion  coefficient calculated as D=

—[82(1~)T(0,k)/&k2]|k=0 does not exist. But there are also

Se= [ 0 0B~ - Dar(~ V224 ZoD !9
]

terms «k? in 2(1~)T(0,k), and it would be more natural to 1

b¢ . . . _ . —(2f-2—-d+2a) dr drIE B (r)
regard them as the one-loop contribution to the effective o M & Bm
counterpart oD, in the full PDF. ’

However, the major effect of the one-loop contribution X[CRlatr=r"B(r")
EE;;;T(O,k) is that in the limitk— 0 it gives rise to a new 1
nonanalytic termxk*2~f subleading compared with the _EM_(Zf_Z_d+2a)j drdr’>, Eq(r)
m,n

Lévy-flight term k', but leading compared with the ordi-

nary diffusion termeck?. Analysis of higher-order contribu- _
tions to the full PDF reveals that theloop contribution at X[Clﬁ]r;%(r_r,)En(r,)_l—zlf drdtE¢Ve
zero frequency gives rise to a subleading term
~Kd*2-tHn=1)(d+2-20) \when the power ok is less than 2.
Above the critical dimensionf2-2 the scaling dimension of
the coupling constargy is negative, therefore the power lof

in these contributions increases with the order of perturba-
tion expansion of the full PDF. Whed+2—f+(n—1)(d  where the random drift field has been expressed as the sum

+2—2f)=2 only corrections to the ordinary diffusion term ©f & solenoidal parB and a potential parE: F=B+E. In

«k?2 are produced. the action(10) the bare coupling constangs andg, in the
Thus, when the dimension of space is between the criticdienormalized correlation functio@r have been replaced by

dimension and the step indexf 2 2<d<f, new subleading their renormalized counterpasg, g.r- The renormaliza-

nonanalytic terms in the PDF are brought about by the perlion constant<p, Z;, andZ, have been introduced to ab-
turbative expansion. However, the leading asymptotic behayS0rP the UV divergences of the modgfeir notation follows
that of Ref[5]). The wave-number scale-setting parameter is

ior of the PDF is not affected by these terms and the pertur: ) .
y P denoted byu. From a careful inspection of the structure of

bation expansion itself remains perfectly consistent. d . .
Therefore, no renormalization of the expansion series i%he fluctuation correctiongb] it follows that
needed to find out the large-scale asymptotic properties of
the model. 7 -7
. 1= 4«2
The appearance of these new nonanalytic terms means,

however, that from the point of view of finding the large-

scale asymptotics of the model, the ordinary diffusion termy, e renormalized model. This relation implies that the ra-
in Eq. (1) is excessive, unless the difference Ris small. In ;4 k=g, /gy is invariant under renormalization and it is
case of small 2 f it has to be taken into account that the gyfficient to analyze the renormalization of the coupling con-
renormalization of the ordinary diffusion term in the full stantgy only. The ratiox remains a free parameter of the
PDF due to the fluctuations of the random fi€ldjives rise  model.

to anomalous asymptotic behavior of the diffusion term The standard critical dimension in this casedis=2f
which, depending on the properties of the random field, may-2+ 2«. Note that in order to carry out the renormalization
even be the leading asymptotic contribution to the full PDF.ynampiguously one of the termsDrd(—V?2)"2p
This issue will be analyzed in detail in the following section.

+zzf dr dtBpV o, (10)

—ZpDori' "2hV2h must be considered an interaction term
[9]. In Eq.(10) the ordinary diffusion term is chosen as a part

, of the interaction, and the ‘Mg distribution term
Il INTERPLAY OF LE VY FLIGHTS AND SOLENOIDAL OCDlR(_VZ)f/Z is therefore not scaled under renormaliza-

DRIFT tion.
Thus, the connection between the renormalized and un-

One important feature in the behavior of thevidlights  renormalizedbare parameters is
in quenched random field has been overlooked practically
completely in Ref[1]. The rare long jumps of the test par-
ticle allow it to escape the traps created by the curl-free part Dir=Dy,
of the generic random field. The divergenceless part of the
drift, however, enhances the transport rate giving rise to su-
perdiffusive behavior even in the case of ordinary random ngTR,u
walks [3-5]. This feature is present also in théweflights
[8], and in certain regions of the parameter space leads to
faster superdiffusive behavior than the rare long jumps of the ZpDoru’"2=D,.
Levy flights.

Consider the case of long-range correlated random field,
for which the renormalized action may be written in the formThe RGy and 8 functions are defined as

2f—2—d+2a_
=07,
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UR,
D.g

LR,

D.g

In Zi!
D.g

where the partial derivatives are calculated with fixed un-

renormalized parameters, antk=grr(D1+Dr) 2% g
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= J dr dt ¢ — 3~ Dipu® (= V) ?+ZpD2rV?] ¢

1
——,u*(z*z”‘*d)f drdr’Y By(r)
2 m,n
X[CRlmn(r

1
__M—(2+2a—d)J dr dr/E Em(r)
2 m,n

—r")Bn(r’)

X[ck];ﬁ(r—r’>5n(r’)+z1jdrdtaz,m

=D,gr/D; are the dimensionless expansion parameters of

the model.

The B functions may be expressed through the

+zzf dr dtB¢pV ¢,

renormalization-group functions of the problem of random

walks in random environmen{s§]:

B,=vrl —(2f—24+2a—d)+2y1p(vr) —2Ypp(VR)]

2(2—f)vrlr
1+{R

B={r(2—1)+(1+{r) yop(VR),

which are labeled by an additional subsciiptAt one-loop
order they functions in Eq.(11) are[5]

(11)

KUR

_ (K—l—2a)vR
P71+ )

70T (14 a)

with the critical dimensiord.=2+ 2« independent of the
step indexf. In this case the connection between renormal-
ized and unrenormalized parameters is

Diru? =Dy,
Zigrru? 2 =gy,
ZpDyr=D,.

The Callan-Symanzik equation is now

d d &

(16)

ak+B“a

The Callan-Symanzik equation for the renormalized PDF

may be written a$5]

a
ft——k

J
Solution by the method of characteristics yields
Pr(s™"t,sk;vr,{r) = Pr(t,k;v,0), (13
where they and{ are obtained from the equations
v dv ¢d¢
—=Ins, =Ins. (14
vRﬁv {ngg

From Egs.(13) and(14) it follows that in the limitt—« the
PDF becomes scale invariant:
Pr(t,k)~R(k t*), (15)

provided the renormalized coupling constangsand {r are
in the basin of attraction of an IR-stable fixed point of Eq.
(12), determined by the equatior = 8,=0 and the condi-
tion that the matrix of derivatives of thg functions with
respect to renormalized coupling constants is positive defi
nite at the fixed point. Obviouslg=f in Eq. (15), as con-
jectured in Ref[1].

Fixing now the scale of thd,k? term | arrive at the
renormalized action

where the dimensionless parameter D,g/D,g and

J
BX:Ma— XR-
M D,g

The B functions are slightly different from those of Ed.1):

By=vrl—(2+2a—d)+2y;p(vr) —2Ypp(VR)]

B 2(2—f)vrxr
1+XR

’

By=xrl—(2—1)—

As above, an analysis of the solution of Efj6) reveals that
the coefficient of the differential operato#,, calculated at
an IR-stable fixed point, yields the dynamic exponest2

+ 95, where y§ is the fixed-point value of the function
¥o(VRXR)-

From the conditions of IR stability of the fixed points of
Eqgs.(12) and(16) it follows [8] that the dynamic exponent is
less than the step index in the following cases.

(1) Divergenceless drift fieldC-=0, a=0. In this case

(1+ xr) Yoo(vR)]-

ithe dynamic exponent is calculated exactly due to absence of

vertex renormalization

Z=§+l—a,
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both for short-range ¢=0) and long-range ¢>0) corre-
lated random field. Conditions of IR stability of the corre-
sponding fixed poinf8]

2—d+2a>0, 2f—d+2a—2>0
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IV. CONCLUSION

In this paper the renormalization of the \yeflights in
guenched random fields has been analyzed in view of the
recent conjecturegd, 2] about the long-time asymptotic prop-
erties of this model. Subtleties in the renormalization of the

imply thatz<f in this case. These expressions are valid forcorresponding field-theoretic model related to the preserva-

a=0, ie., for both short-range and long-range correlatedion of_ symmetries and locality properties have been iII_us-
solenoidal random field. trated in the example of the one-loop self-energy correction.

(2) Unconstrained drift field with long-range correlations: It ha; been _shown that th‘?. Iarge—sca!e Iong-;ime
CT#0, CL+0, a>0. In this case the dynamic exponent hasasympto,tlc behavior of the probability distribution function
been calculated in the form of expansion in the small paramOf the Levy flights is affected by the appearance of new

eterd, —d=2+ 2a—d: at the leading nontrivial order subleading nonanalytic terms in space dimensiofs- 2

<d<f, which are generated by fluctuations of the drift field
together with the [ey flight term in the zero-field PDF.
However, the leading asymptotic behavior remains unaf-
fected by this mechanism down to the critical dimensign
=2f—2, at and below which the perturbation theory breaks
down, and a renormalization-group treatment is called for.
The “critical dimension” of Ref.[1] d=f is thus related to
the change in the analytic structure of the subleading terms
of the PDF rather than to the divergence of the coefficient of
the ordinary diffusion term in the full PDF.

It has been also shown that anomalous long-time
asymptotic behavior may be also brought about by the renor-
malization of the ordinary diffusive term below the critical

(k—1-2a)(2+2a—d)
2(1+2a)

z=2+

The stability conditions of the corresponding fixed point are

(k—1-2a)(2+2a—d)

2-t+ 2(1+ 2a)

2+2a—d>0, k<1+2«,

and lead again to the conclusion tlat f. In other cases,
V\{hen the dynar_nic exponent is calculable for thévye dimension of the ordinary diffusiod,=2+2« (which is
flights, the equalityz=f holds. , ... higher than that of the e flights). In some cases this

_ The possibility of fixing the scale of the ordinary diffu- yie|ds not only subleading but the leading contribution to the
sion term instead of the hg-flight term was in fact briefly  asymptotic behavior of the PDF. In particular, it has been
considered also in Refl] (Appendix B, but for a case shown that the superdiffusive asymptotic behavior of the
where the diffusion-enhancing property of the divergencelesgévy flights is brought about by both the rare long jumps
part of the drift field did not affect the asymptotic behavior. typical of the Lavy flights, and the diffusion-enhancing ad-
As shown above, superdiffusive behavior is in general due teection by the divergenceless part of the drift field. The lead-
both the rare long jumps of the i flights and the advec- ing asymptotic term has been shown to be due to the drift
tion by the solenoidal part of the drift field, and for a finite field advection for slowly enough falling off correlations of
range of physically acceptable values of the parameters thie drift field, and in this case the dynamic critical exponent
dynamic exponent=2+ y5<f. z<f, contrary to the conjecture of Refd,2].
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