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Asymptotic properties of Lévy flights in quenched random fields
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Long-time asymptotic behavior of the probability distribution function of Le´vy flights in quenched random
fields is analyzed with the use of field-theoretic renormalization group. This problem has been recently studied
with the aid of a dynamic renormalization group based on the momentum-shell integration method@H.C.
Fogedby, Phys. Rev. E58, 1690~1998!#. While a great deal of the results of the quoted paper are confirmed
by the present analysis, it is also shown that random field with long-range spatial correlations gives rise to
asymptotic behavior with the dynamic critical exponentz less than the step indexf of the Lévy flights, for a
finite range of values off contrary to the conjecture that alwaysz5 f . In particular, in divergenceless random
field z5d/2112a, f , whena,11d/22 f andd,212a, and correlations fall off asr 2d12a. The physical
content of a new critical dimension proposed in the aforementioned paper in connection with the anomalous
scaling of the diffusion coefficient is also discussed.

PACS number~s!: 05.40.Fb, 02.50.2r
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I. INTRODUCTION

Recently, the momentum-shell version of th
renormalization-group~RG! approach to the analysis o
long-time large-scale asymptotic behavior of probability d
tribution functions was applied to Le´vy flights in various
quenched random fields@1,2#. Lévy flights are a generaliza
tion of random walks with a step distributionp( l ) falling off
as a power of the step lengthp( l )} l 212 f with the step index
0, f ,2. The probability distribution function~PDF! P(t,r )
of the positionr of a test particle in the external fieldF obeys
the following Fokker-Planck equation:

]P

]t
52D1~2¹2! f /2P1D2¹2P2¹@FP#. ~1!

Here, the initial conditionP(0,r )5d(r ) will be used. In Eq.
~1! the fractional power of¹2 is defined through the Fourie
transform. The ordinary diffusion term is brought about
the small-scale part of the step distribution.

The zero-mean Gaussian distribution of the random fi
is determined by the correlation function

^Fm~r !Fn~r 8!&5Cmn~r2r 8!. ~2!

In the generic case the correlation function@3–5# consists of
independent transverse and longitudinal partsC5CT1CL,
where~in d-dimensional space!

Cmn
T ~r !5gTE dk

~2p!d

ei r•k

k2a S dmn2
kmkn

k2 D ,

Cmn
L ~r !5gLE dk

~2p!d

ei r•k

k2a

kmkn

k2
, ~3!
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where the coupling constantsgT and gL measure the inten
sity of the correlations of solenoidal and potential parts,
spectively, of the random field. The correlation function
the isotropic short-range caseCmn(r )5gdmnd(r ) is recov-
ered forgT5gL5g anda50.

The motion of a test particle may be heavily affected
the random field leading to anomalous diffusion, i.e., to
long-time asymptotic behavior of the PDF in the form

P~ t,r !5t2d/zR~r t21/z!, ~4!

with the dynamic critical exponentzÞ2. In Eq. ~4! R is a
dimensionless scaling function.

A perturbative solution of the stochastic problem~1!–~3!
becomes inconsistent below a critical dimensiondc , at and
below which contributions from the small-wave-number~IR!
region in the Fourier-transformed problem give rise to effe
tive coupling constants growing with time. The critical d
mension is determined from the condition that the coupl
constantsgT and gL are dimensionless. For instance,dc
52 f 22 for Lévy flights with the step indexf in a quenched
field with isotropic local correlations.

These IR divergences may be dealt with by the use of
renormalization group in the critical dimension, where th
can be transferred to the large-momentum region. The res
may be extented below the critical dimension in the form
a dc2d expansion@6#. Above the critical dimension the per
turbative solution is consistent and the leading asympt
part of the PDF in the random field is the same as in z
field. Whend,dc , the higher order contributions to the PD
affect its structure and the resulting limiting distribution
not stable.

In Ref. @1# the asymptotic analysis was carried out by t
use of the momentum-shell integration method for a gen
random field with independent solenoidal and potential pa
and both short-range and long-range correlations. Among
basic results of Ref.@1# was the observation that fluctuation
of the drift field give rise to effective diffusive contribution
nonanalytic ink2, which was interpreted as another critic
dimension~higher than that defined above by dimension

-
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arguments! appearing for the model of Le´vy flights in
quenched random fields. It will be shown in this paper t
these nonanalytic contributions remain subleading and do
spoil the ordinary perturbation expansion until the us
critical dimensiondc is reached, whereas ford<dc the drift-
field fluctuations generate leading terms~this effect may be
described as coupling constants growing with time!, which
calls for a renormalization of the perturbation expansion.

It was also conjectured in Ref.@1# that the dynamic criti-
cal exponentz5 f irrespective of the dimension of space a
the properties of the quenched disorder. This is in indeed
in large regions of the parameter space spanned byd and f,
but it will be shown below that there are also regions
which z, f due to the transport-enhancing effect of the s
lenoidal part of the drift field with long-range correlations

This paper is organized as follows. In Sec. II subtleties
the calculation of small-wave-number divergences are a
lyzed and the role of the usual critical dimension and that
forward in Ref. @1# discussed. Interplay of the rare lon
jumps of Lévy flights and solenoidal random advection in t
generation of anomalous diffusion is analyzed in Sec.
with the aid of the field-theoretic RG. Section IV is devot
to conclusions.

II. DIVERGENCES IN THE PERTURBATION THEORY
AT LARGE SCALES

I will use the field-theoretic setup to formulate the pertu
bative solution of the stochastic problem~1!, ~2!. The PDF
determined by Eq.~1! and averaged over the random for
may be written in the form of a functional integral~see, e.g.,
Ref. @6#!

P~ t,r !5E DfDf̃DF f~ t,r !f̃~0,0!eS(f,f̃,F),

where the ‘‘action’’ is of the form

S~f,f̃,F!5E dr dt f̃@2] t2D1~2¹2! f /21D2¹2#f

2
1

2E dr dr 8(
m,n

Fm~r !Cmn
21~r2r 8!Fn~r 8!

1E dr dt Ff¹f̃. ~5!

The standard renormalization theorem@7# is constructed for
interactions local in space. For the short-range isotropic c
relation function Cmn(r2r 8)5gdmnd(r2r 8) integration
over the Gaussian drift field yields a local in space effect
action for the fieldsf andf̃. However, in the generic case
nonlocal interaction term results, and then it is thus pre
able not to integrate out the drift fieldF in the action~5!.

To remind the origin of the divergence problems I calc
late the simplest fluctuation correction to the zero-field P

P0~v,k!5
1

2 iv1D1kf1D2k2
t
ot
l

so

-

n
a-
t

I

-

r-

e

r-

-
F

of Eq. ~1!. It is customary to express the fluctuation corre
tions in terms of a self-energy functionSff̃(v,k) defined
through the full PDFP(v,k) ~i.e., averaged over the drif
field F) as

P~v,k!5
1

2 iv1D1kf1D2k22Sff̃~v,k!
. ~6!

In order to make wave-number integrals in the pertur
tive expansion of the self-energy finite it is necessary to
troduce a large-wave-number~UV! regularization. This is
often done by the use of a cutoff parameterL for the wave
numbers. Physically,L is the inverse of the microscopi
physical length scale, below which the macroscopic desc
tion of Eqs.~1!, ~2! does not apply.

The actual renormalization is carried out in the critic
dimension, in which the UV and possible IR divergences
related. The standard machinery of the renormalizat
theory allows to deal consistently with the UV divergenc
only, therefore it is necessary to distinguish contributions
singularities coming from the UV and IR regions of th
wave-vector space. To this end, it is useful to introduce a
a small-wave-number regularization. There are many way
carry out both regularizations, but some care should be ta
in doing this, e.g., to preserve important symmetries of
model.

The IR regularization may be introduced, for instance,
adding a decay term2m2P to the right-hand side of the
original Fokker-Planck equation~1!. This is equivalent to an
imaginary shift in the frequencyv→v1 im2. In this case
there is no need for a separate small-wave-number regu
ization in the quenched model, since the frequency acts a
effective IR-cutoff parameter due to the absence of integ
tions over frequencies.

In Ref. @1# the short-range isotropic correlation functio
Cmn(k)5gdmn was used for illustration of the calculation o
divergent contributions to the self-energy. This particular e
ample is, however, somewhat misleading, since the prese
of the divergence conjectured in Ref.@1# in the wave-vector
expansion of the one-loop contribution to the PDF:

Sff̃
(1)

~v,k!52gE dq

~2p!d

3(
l

kl~kl1ql !T~k,q,m,L!

@2 iv1D1~k1q! f1D2~k1q!2#
~7!

heavily depends on the choice of the regularization. In
~7! T is a, so far unspecified, function for the regularizati
of the wave-number integral.

The simplest way to introduce a regularization is to
strict all the integration variables to finite shellsm<uqu<L
in the wave-number integrals, which in Eq.~7! would corre-
spond to the choiceT(k,q,m,L)5T(q)5u(q2m)2u(L
2q), whereu is the Heaviside step function. This metho
has the disadvantage that the translational invariance is

Translationally invariant regularization may be achiev
by the use of the same functionT to restrict wave vectors
flowing in the zero-field PDFs or drift-field correlation func
tions P0(v,k)→P0(v,k)T(k) or Ci j (k)→Ci j (k)T(k), re-
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spectively. For the one-loop graph~7! the latter choice re-
sults in the same integral as the simple cutoff of
integration variables. Regularization by a cutoff of the wa
vector flowing in the correlation function, however, has t
disadvantage that the regularized correlation funcion ce
to be local in space. Therefore, to preserve both translati
invariance and local character of correlations the regular
tion procedure should be applied to the free-field PDF on

The cutoff of integration variables has been used for re
larization in Ref.@1#, as can be seen from its Appendix B
This cutoff indeed leads to renormalization of the diffusi
coefficient D2 by a quantity divergent in the limitm→0,
when the integral~7! is calculated atv50.

However, if an IR regularization by the decay term
assumed, then the leading nonvanishing coefficient of
Taylor expansion of the function~7! with respect tok is
given by the integral

I mn~k!52gE
q<L

dq

~2p!d

]

]km

3
~kn1qn!

@m21D1~k1q! f1D2~k1q!2#
. ~8!

The derivatives with respect tokn act on a function ofk
1q and may thus be replaced by the derivatives with resp
to qn . By virtue of the Gauss theorem, the integral~8! may
be written as a surface integral over the surface of a sphe
radiusL in the wave-vector space:

I mn~0!52gE dS

~2p!d

emenL

@m21D1L f1D2L2#

52g
2Ldpd/2dmn

G~d/2!d~2p!d@m21D1L f1D2L2#
,

where the unit vectore5q/q has been introduced. Thus the
is no divergence in the leading term of the wave-vector
pansion ofSff̃

(1) , whenm2→0:

Sff̃
(1)

~0,k!52g
2Ldk2

G~d/2!d~4p!d/2@D1L f1D2L2#
1o~k2!.

Even a more radical result is obtained, if, in order to be s
that all the symmetries of the original model are preserve
the renormalized one, the regularization through the fr
field PDF @P0(v,k)→P0(v,k)T(k)# is chosen. Then a
simple change of variables shows that the integral in Eq.~7!
is independent of the external wave vectork and thus due to
rotational invariance vanishes identically.

This dependence on the choice of the regularization p
cedure reflects not only the subtleties in the choice of a c
sistent method of renormalization, but also the singular
pendence of the full PDF on the frequency and wa
number. Problems related to a consistent choice of a re
malization prescription become rather involved in higher
ders due to overlapping of divergences in manyfold wa
vector integrals. Thus, care must be taken when inferr
asymptotic properties of a model from its divergent pert
bation expansion. I would like to emphasize that to date
l
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only consistent regular method to analyze asymptotic beh
ior of a perturbative expansion is the field-theoretic ren
malization group.

In general perturbative contributions to the self-ener
function Sff̃(v,k) ~6! are singular functions ofv and k.
This can be seen already at the one-loop level for unc
strained drift field. Consider, for instance, the one-loop in
gral with the transverse correlation function~I will use a
regularization through the correlation function here for si
plicity, because the transverse correlation function is non
cal in space anyway!

Sff̃
(1)T

~v,k!52
gT

D1
E

q<L

dq

~2p!d

3(
m,n

km~kn1qn!

@2 iv/D11~k1q! f #
S dmn2

qmqn

q2 D ,

where I have retained only the leading terms in the limit
small frequency and wave number of the zero-field PDF.

Proceeding in the standard fashion@6# I investigate the
scaling limitv→sfv k→sk of the full PDF. After a suitable
change of variables and taking into account that the exte
wave vectors factorize, I arrive at the expression

Sff̃
(1)T

~sfv,sk!52
gT

D1
(
m,n

skmsknE
q<L/s

dq

~2p!d

3
sd2 f

@2 iv/D11~k1q! f #
S dmn2

qmqn

q2 D .

~9!

In the limit s→0 the effective UV cutoffL/s→` and the
integral in Eq.~9! diverges assf 2d, whend. f ~logarithmi-
cally, whend5 f ). Due to the prefactor,sd122 f , the whole
expressionSff̃

(1)T(sfv,sk) behaves ass2 (s2 ln s in d5 f ) in
the limit s→0, which is small compared with the zeroth
order termP0

21(sfv,sk);sf(2 iv1D1kf).
Further, whend, f , the integral in Eq.~9! converges in

the region of large wave numbers and its scaling behavio
given by sd2 f . This is a signal of singular behavior of th
integral in the region of small wave numbers in the limits
→0. The borderline valued5 f is the first critical dimension
put forward in Ref.@1#. However, to judge about the beha
ior of the whole perturbative correctionSff̃

(1)T in this limit,
the scaling of the factorized wave vectors must be taken
account. Thus, ford, f the one-loop term scales a
Sff̃

(1)T(sfv,sk);sd122 f5sf 1(d22 f 12) being still subleading,
while d.2 f 22. Only for d<2 f 22 the perturbative correc
tion scales in such a way that it becomes the leading con
bution at this order. This may be expressed asgTsd22 f 12

becoming the effective expansion parameter and thus inv
dating the perturbation expansion. Therefore, the usual
turbation theory becomes inapplicable only at and below
standard critical dimensiondc52 f 22.

The singular behavior of the integral in Eq.~9! for d, f
means thatSff̃

(1)T(0,k);kd122 f , and since the power ofk
here is less than two and noninteger, its contribution
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the diffusion coefficient calculated as D2
(1)5

2@]Sff̃
(1)T(0,k)/]k2#uk50 does not exist. But there are als

terms }k2 in Sff̃
(1)T(0,k), and it would be more natural to

regard them as the one-loop contribution to the effect
counterpart ofD2 in the full PDF.

However, the major effect of the one-loop contributio
Sff̃

(1)T(0,k) is that in the limit k→0 it gives rise to a new
nonanalytic term}kd122 f subleading compared with th
Lévy-flight term }kf , but leading compared with the ord
nary diffusion term}k2. Analysis of higher-order contribu
tions to the full PDF reveals that then-loop contribution at
zero frequency gives rise to a subleading te
;kd122 f 1(n21)(d1222 f ) when the power ofk is less than 2.
Above the critical dimension 2f 22 the scaling dimension o
the coupling constantgT is negative, therefore the power ofk
in these contributions increases with the order of pertur
tion expansion of the full PDF. Whend122 f 1(n21)(d
1222 f )>2 only corrections to the ordinary diffusion term
}k2 are produced.

Thus, when the dimension of space is between the crit
dimension and the step index: 2f 22,d, f , new subleading
nonanalytic terms in the PDF are brought about by the p
turbative expansion. However, the leading asymptotic beh
ior of the PDF is not affected by these terms and the per
bation expansion itself remains perfectly consiste
Therefore, no renormalization of the expansion series
needed to find out the large-scale asymptotic propertie
the model.

The appearance of these new nonanalytic terms me
however, that from the point of view of finding the larg
scale asymptotics of the model, the ordinary diffusion te
in Eq. ~1! is excessive, unless the difference 22 f is small. In
case of small 22 f it has to be taken into account that th
renormalization of the ordinary diffusion term in the fu
PDF due to the fluctuations of the random fieldF gives rise
to anomalous asymptotic behavior of the diffusion te
which, depending on the properties of the random field, m
even be the leading asymptotic contribution to the full PD
This issue will be analyzed in detail in the following sectio

III. INTERPLAY OF LE ´ VY FLIGHTS AND SOLENOIDAL
DRIFT

One important feature in the behavior of the Le´vy flights
in quenched random field has been overlooked practic
completely in Ref.@1#. The rare long jumps of the test pa
ticle allow it to escape the traps created by the curl-free p
of the generic random field. The divergenceless part of
drift, however, enhances the transport rate giving rise to
perdiffusive behavior even in the case of ordinary rand
walks @3–5#. This feature is present also in the Le´vy flights
@8#, and in certain regions of the parameter space lead
faster superdiffusive behavior than the rare long jumps of
Lévy flights.

Consider the case of long-range correlated random fi
for which the renormalized action may be written in the fo
e

-

al

r-
v-
r-
t.
is
of

ns,

y
.

.

ly

rt
e

u-

to
e

d,

SR5E dr dt f̃@2] t2D1R~2¹2! f /21ZDD2Rm f 22¹2#f

2
1

2
m2(2 f 222d12a)E dr dr 8(

m,n
Bm~r !

3@CR
T#mn

21~r2r 8!Bn~r 8!

2
1

2
m2(2 f 222d12a)E dr dr 8(

m,n
Em~r !

3@CR
L #mn

21~r2r 8!En~r 8!1Z1E dr dt Ef¹f̃

1Z2E dr dt Bf¹f̃, ~10!

where the random drift field has been expressed as the
of a solenoidal partB and a potential partE: F5B1E. In
the action~10! the bare coupling constantsgT andgL in the
renormalized correlation functionCR have been replaced b
their renormalized counterpartsgTR , gLR . The renormaliza-
tion constantsZD , Z1, andZ2 have been introduced to ab
sorb the UV divergences of the model~their notation follows
that of Ref.@5#!. The wave-number scale-setting paramete
denoted bym. From a careful inspection of the structure
the fluctuation corrections@5# it follows that

Z15Z2

in the renormalized model. This relation implies that the
tio k5gL /gT is invariant under renormalization and it
sufficient to analyze the renormalization of the coupling co
stantgT only. The ratiok remains a free parameter of th
model.

The standard critical dimension in this case isdc52 f
2212a. Note that in order to carry out the renormalizatio
unambiguously one of the termsD1Rf̃(2¹2) f /2f

2ZDD2Rm f 22f̃¹2f must be considered an interaction ter
@9#. In Eq.~10! the ordinary diffusion term is chosen as a pa
of the interaction, and the Le´vy distribution term
}D1R(2¹2) f /2 is therefore not scaled under renormaliz
tion.

Thus, the connection between the renormalized and
renormalized~bare! parameters is

D1R5D1 ,

Z1
2gTRm2 f 222d12a5gT ,

ZDD2Rm f 225D2 .

The RGg andb functions are defined as



n

he
m

D

q

e

al-

f
s

e of

PRE 62 7815ASYMPTOTIC PROPERTIES OF LE´VY FLIGHTS IN . . .
bv5m
]

]m U
D,g

vR ,

bz5m
]

]m U
D,g

zR ,

g i52m
]

]m U
D,g

ln Zi ,

where the partial derivatives are calculated with fixed u
renormalized parameters, andvR5gTR(D11D2R)22, zR
5D2R /D1 are the dimensionless expansion parameters
the model.

The b functions may be expressed through t
renormalization-group functions of the problem of rando
walks in random environments@8#:

bv5vR@2~2 f 2212a2d!12g1D~vR!22gDD~vR!#

2
2~22 f !vRzR

11zR
,

bz5zR~22 f !1~11zR!gDD~vR!, ~11!

which are labeled by an additional subscriptD. At one-loop
order theg functions in Eq.~11! are @5#

g1D5
kvR

2~11a!
, gDD5

~k2122a!vR

2~11a!
.

The Callan-Symanzik equation for the renormalized P
may be written as@5#

F f t
]

]t
2k

]

]k
1bv

]

]vR
1bz

]

]zR
GPR~ t,k!50. ~12!

Solution by the method of characteristics yields

PR~s2 f t,sk;vR ,zR!5PR~ t,k; v̄,z̄ !, ~13!

where thev̄ and z̄ are obtained from the equations

E
vR

v̄ dv
bv

5 ln s, E
zR

z̄ dz

bz
5 ln s. ~14!

From Eqs.~13! and~14! it follows that in the limitt→` the
PDF becomes scale invariant:

PR~ t,k!;R̃~k t1/f !, ~15!

provided the renormalized coupling constantsvR andzR are
in the basin of attraction of an IR-stable fixed point of E
~12!, determined by the equationsbv5bz50 and the condi-
tion that the matrix of derivatives of theb functions with
respect to renormalized coupling constants is positive d
nite at the fixed point. Obviouslyz5 f in Eq. ~15!, as con-
jectured in Ref.@1#.

Fixing now the scale of theD2k2 term I arrive at the
renormalized action
-

of

F

.

fi-

S5E dr dt f̃@2] t2D1Rm22 f~2¹2! f /21ZDD2R¹2#f

2
1

2
m2(212a2d)E dr dr 8(

m,n
Bm~r !

3@CR
T#mn

21~r2r 8!Bn~r 8!

2
1

2
m2(212a2d)E dr dr 8(

m,n
Em~r !

3@CR
L #mn

21~r2r 8!En~r 8!1Z1E dr dt Ef¹f̃

1Z2E dr dt Bf¹f̃,

with the critical dimensiondc5212a independent of the
step indexf. In this case the connection between renorm
ized and unrenormalized parameters is

D1Rm22 f5D1 ,

Z1
2gTRm212a2d5gT ,

ZDD2R5D2 .

The Callan-Symanzik equation is now

F ~21gD!t
]

]t
2k

]

]k
1bv

]

]vR
1bx

]

]xR
GPR~ t,k!50,

~16!

where the dimensionless parameterx5D1R /D2R and

bx5m
]

]m
U

D,g

xR .

Theb functions are slightly different from those of Eq.~11!:

bv5vR@2~212a2d!12g1D~vR!22gDD~vR!#

2
2~22 f !vRxR

11xR
,

bx5xR@2~22 f !2~11xR!gDD~vR!#.

As above, an analysis of the solution of Eq.~16! reveals that
the coefficient of the differential operatort] t , calculated at
an IR-stable fixed point, yields the dynamic exponentz52
1gD* , where gD* is the fixed-point value of the function
gD(vR ,xR).

From the conditions of IR stability of the fixed points o
Eqs.~12! and~16! it follows @8# that the dynamic exponent i
less than the step index in the following cases.

~1! Divergenceless drift field:CL50, a>0. In this case
the dynamic exponent is calculated exactly due to absenc
vertex renormalization

z5
d

2
112a,
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both for short-range (a50) and long-range (a.0) corre-
lated random field. Conditions of IR stability of the corr
sponding fixed point@8#

22d12a.0, 2f 2d12a22.0

imply that z, f in this case. These expressions are valid
a>0, i.e., for both short-range and long-range correla
solenoidal random field.

~2! Unconstrained drift field with long-range correlation
CTÞ0, CLÞ0, a.0. In this case the dynamic exponent h
been calculated in the form of expansion in the small para
eterdc2d5212a2d; at the leading nontrivial order

z521
~k2122a!~212a2d!

2~112a!
.

The stability conditions of the corresponding fixed point a

22 f 1
~k2122a!~212a2d!

2~112a!
,0,

212a2d.0, k,112a,

and lead again to the conclusion thatz, f . In other cases
when the dynamic exponent is calculable for the Le´vy
flights, the equalityz5 f holds.

The possibility of fixing the scale of the ordinary diffu
sion term instead of the Le´vy-flight term was in fact briefly
considered also in Ref.@1# ~Appendix E!, but for a case
where the diffusion-enhancing property of the divergence
part of the drift field did not affect the asymptotic behavio
As shown above, superdiffusive behavior is in general du
both the rare long jumps of the Le´vy flights and the advec
tion by the solenoidal part of the drift field, and for a fini
range of physically acceptable values of the parameters
dynamic exponentz521gD* , f .
.H
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IV. CONCLUSION

In this paper the renormalization of the Le´vy flights in
quenched random fields has been analyzed in view of
recent conjectures@1,2# about the long-time asymptotic prop
erties of this model. Subtleties in the renormalization of t
corresponding field-theoretic model related to the prese
tion of symmetries and locality properties have been illu
trated in the example of the one-loop self-energy correcti

It has been shown that the large-scale long-ti
asymptotic behavior of the probability distribution functio
of the Lévy flights is affected by the appearance of ne
subleading nonanalytic terms in space dimensions 2f 22
,d, f , which are generated by fluctuations of the drift fie
together with the Le´vy flight term in the zero-field PDF.
However, the leading asymptotic behavior remains un
fected by this mechanism down to the critical dimensiondc
52 f 22, at and below which the perturbation theory brea
down, and a renormalization-group treatment is called
The ‘‘critical dimension’’ of Ref.@1# d5 f is thus related to
the change in the analytic structure of the subleading te
of the PDF rather than to the divergence of the coefficien
the ordinary diffusion term in the full PDF.

It has been also shown that anomalous long-ti
asymptotic behavior may be also brought about by the ren
malization of the ordinary diffusive term below the critic
dimension of the ordinary diffusiondc5212a ~which is
higher than that of the Le´vy flights!. In some cases this
yields not only subleading but the leading contribution to t
asymptotic behavior of the PDF. In particular, it has be
shown that the superdiffusive asymptotic behavior of
Lévy flights is brought about by both the rare long jum
typical of the Lévy flights, and the diffusion-enhancing ad
vection by the divergenceless part of the drift field. The lea
ing asymptotic term has been shown to be due to the d
field advection for slowly enough falling off correlations o
the drift field, and in this case the dynamic critical expone
z, f , contrary to the conjecture of Refs.@1,2#.
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